Eclat - A strong & stylish effect
# Data Preprocessing
# install.packages('arules')
library(arules)
dataset = read.csv('Market_Basket_Optimisation.csv')
dataset = read.transactions('Market_Basket_Optimisation.csv', sep = ',', rm.duplicates = TRUE)
Output
distribution of transactions with duplicates:
1
5
summary(dataset)
transactions as itemMatrix in sparse format with
7501 rows (elements/itemsets/transactions) and
119 columns (items) and a density of 0.03288973
most frequent items:
mineral water eggs spaghetti french fries chocolate (Other)
1788 1348 1306 1282 1229 22405
element (itemset/transaction) length distribution:
sizes
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 18
1754 1358 1044 816 667 493 391 324 259 139 102 67 40 22 17 4 1
19 20
2 1
Min. 1st Qu. Median Mean 3rd Qu. Max.
1.000 2.000 3.000 3.914 5.000 20.000
includes extended item information - examples:
labels
1 almonds
2 antioxydant juice
3 asparagus
itemFrequencyPlot(dataset, topN = 10)
# Training Eclat on the dataset
rules = eclat(data = dataset, parameter = list(support = 0.003, minlen = 2))
Output
Eclat
parameter specification:
tidLists support minlen maxlen target ext
FALSE 0.003 2 10 frequent itemsets FALSE
algorithmic control:
sparse sort verbose
7 -2 TRUE
Absolute minimum support count: 22
create itemset ...
set transactions ...[119 item(s), 7501 transaction(s)] done [0.00s].
sorting and recoding items ... [115 item(s)] done [0.00s].
creating sparse bit matrix ... [115 row(s), 7501 column(s)] done [0.00s].
writing ... [1328 set(s)] done [0.02s].
Creating S4 object ... done [0.00s].
# Visualising the results
inspect(sort(rules, by = 'support')[1:10])
items support count
[1] {mineral water,spaghetti} 0.05972537 448
[2] {chocolate,mineral water} 0.05265965 395
[3] {eggs,mineral water} 0.05092654 382
[4] {milk,mineral water} 0.04799360 360
[5] {ground beef,mineral water} 0.04092788 307
[6] {ground beef,spaghetti} 0.03919477 294
[7] {chocolate,spaghetti} 0.03919477 294
[8] {eggs,spaghetti} 0.03652846 274
[9] {eggs,french fries} 0.03639515 273
[10] {frozen vegetables,mineral water} 0.03572857 268
Comments
Post a Comment