Decision Tree Classification
# Importing the dataset
dataset
= read.csv('Social_Network_Ads.csv')
dataset
= dataset[3:5]
# Encoding the target feature as factor
dataset$Purchased
= factor(dataset$Purchased, levels = c(0, 1))
# Splitting the dataset into the Training set and Test set
# install.packages('caTools')
library(caTools)
set.seed(123)
split =
sample.split(dataset$Purchased, SplitRatio = 0.75)
training_set
= subset(dataset, split == TRUE)
test_set
= subset(dataset, split == FALSE)
# Feature Scaling
training_set[-3]
= scale(training_set[-3])
test_set[-3]
= scale(test_set[-3])
# Fitting Decision Tree Classification to the Training set
# install.packages('rpart')
library(rpart)
classifier
= rpart(formula = Purchased ~ .,
data = training_set)
# Predicting the Test set results
y_pred
= predict(classifier, newdata = test_set[-3], type = 'class')
# Making the Confusion Matrix
cm =
table(test_set[, 3], y_pred)
# Visualising the Training set results
library(ElemStatLearn)
set =
training_set
X1 =
seq(min(set[, 1]) - 1, max(set[, 1]) + 1, by = 0.01)
X2 =
seq(min(set[, 2]) - 1, max(set[, 2]) + 1, by = 0.01)
grid_set
= expand.grid(X1, X2)
colnames(grid_set)
= c('Age', 'EstimatedSalary')
y_grid
= predict(classifier, newdata = grid_set, type = 'class')
plot(set[,
-3],
main = 'Decision Tree
Classification (Training set)',
xlab = 'Age', ylab = 'Estimated
Salary',
xlim = range(X1), ylim =
range(X2))
contour(X1,
X2, matrix(as.numeric(y_grid), length(X1), length(X2)), add = TRUE)
points(grid_set,
pch = '.', col = ifelse(y_grid == 1, 'springgreen3', 'tomato'))
points(set,
pch = 21, bg = ifelse(set[, 3] == 1, 'green4', 'red3'))
# Visualising the Test set results
library(ElemStatLearn)
set =
test_set
X1 =
seq(min(set[, 1]) - 1, max(set[, 1]) + 1, by = 0.01)
X2 =
seq(min(set[, 2]) - 1, max(set[, 2]) + 1, by = 0.01)
grid_set
= expand.grid(X1, X2)
colnames(grid_set)
= c('Age', 'EstimatedSalary')
y_grid
= predict(classifier, newdata = grid_set, type = 'class')
plot(set[,
-3], main = 'Decision Tree Classification (Test set)',
xlab = 'Age', ylab = 'Estimated
Salary',
xlim = range(X1), ylim =
range(X2))
contour(X1,
X2, matrix(as.numeric(y_grid), length(X1), length(X2)), add = TRUE)
points(grid_set,
pch = '.', col = ifelse(y_grid == 1, 'springgreen3', 'tomato'))
points(set,
pch = 21, bg = ifelse(set[, 3] == 1, 'green4', 'red3'))
# Plotting the tree
plot(classifier)
text(classifier)
Comments
Post a Comment