Decision Tree Regression
# Importing the dataset
dataset
= read.csv('Position_Salaries.csv')
dataset
= dataset[2:3]
# Fitting Decision Tree Regression to the dataset
# install.packages('rpart')
library(rpart)
regressor
= rpart(formula = Salary ~ .,
data = dataset,
control = rpart.control(minsplit
= 1))
# Predicting a new result with Decision Tree Regression
y_pred
= predict(regressor, data.frame(Level = 6.5))
# Visualising the Decision Tree Regression results (higher
resolution)
# install.packages('ggplot2')
library(ggplot2)
x_grid
= seq(min(dataset$Level), max(dataset$Level), 0.01)
ggplot()
+
geom_point(aes(x =
dataset$Level, y = dataset$Salary),
colour = 'red') +
geom_line(aes(x = x_grid, y =
predict(regressor, newdata = data.frame(Level = x_grid))),
colour = 'blue') +
ggtitle('Truth or Bluff
(Decision Tree Regression)') +
xlab('Level') +
ylab('Salary')
# Plotting the tree
plot(regressor)
text(regressor)
Comments
Post a Comment