K-Means Clustering
# Importing the dataset dataset = read.csv('Mall_Customers.csv') dataset = dataset[4:5] # Splitting the dataset into the Training set and Test set # install.packages('caTools') # library(caTools) # set.seed(123) # split = sample.split(dataset$DependentVariable, SplitRatio = 0.8) # training_set = subset(dataset, split == TRUE) # test_set = subset(dataset, split == FALSE) # Feature Scaling # training_set = scale(training_set) # test_set = scale(test_set) # Using the elbow method to find the optimal number of clusters set.seed(6) wcss = vector() for (i in 1:10) wcss[i] = sum(kmeans(dataset, i)$withinss) plot(1:10, wcss, type = 'b', main = paste('The Elbow Method'), xlab = 'Number of clusters', ylab = 'WCSS') # Fitting K-Means to the dataset set.seed(29) kmeans = kmeans(x = dataset, centers = 5) y_kmeans = kmeans$cluster # Visualising the clusters ...